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The Einstein equations
(Mathematical) General Relativity is concerned with investigating the properties of
spacetimes.

They are n + 1-dimensional Lorentzian manifolds (Mn+1, h), n ≥ 3,
satisfying the Einstein equations:

Ric(h)− 1
2
R(h)h = T . (E )

Here Ric(h) is the Ricci tensor of h, R(h) is its scalar curvature and T is the
stress-energy tensor.

T describes the coupling between gravity and matter/scalar fields inM. It is
divergence-free:

∇αTαβ = 0,

and is usually required to satisfy some form of energy condition. For instance the
weak energy condition:

TαβX
αXβ ≥ 0 for any timelike field X ,

which says that the observed local matter density is always nonnegative.
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An example: the scalar-field setting
In a scalar-field setting (our main focus) gravity is coupled to matter via a
scalar-field.

Here T is given by:

Tαβ = ∇αΨ∇βΨ−
(
1
2
|∇Ψ|2h + V (Ψ)

)
hαβ .

Here Ψ ∈ C∞(Mn+1) is a scalar-field and V ∈ C∞(R) is its potential. They
satisfy in addition:

�hΨ = V ′(Ψ).

Ψ describes the distribution of matter and/or energy in the universe.

Physical cases covered by this model:
The vacuum case Ψ ≡ 0, with or without cosmological constant: V ≡ Λ. In
this case the Einstein equations become:

Ric(h) =
2Λ

n − 1
h.

Klein-Gordon fields: V (Ψ) = 1
2mΨ2, m > 0
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The evolution problem

Physically realistic spacetimes need to possess good causal properties.

One looks for spacetimes which split asMn+1 = Mn ×R, where each Mn × {t} is
a spacelike hypersurface, that is h restricted to Mn × {t} is Riemannian. (The
real notion: globally hyperbolic spacetimes.)

Let gt and Kt be the metric and second fundamental form of Mn × {t} ⊂ Mn+1.
The Lorentzian metric h can be thus seen as a path t 7→ gt of Riemannian metrics
that evolve “in time”, and whose time derivative is:

∂tgt ∼ 2Kt .

Question: is any choice (g ,K ) on Mn × {0} admissible to be induced by a
solution of the Einstein equations?
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The constraint equations

The structureMn+1 = (Mn × R, h) induces necessary conditions on g := g0 and
K := K0 to solve the Einstein equations:

Ric(h)− 1
2
R(h)h = T .

We now show how these necessary conditions are obtained. Let ~n be a unit
normal vector to Mn × {0} inMn+1, represented by the index 0, and (ei )i an
orthonormal basis on Mn. The Einstein equations yield:

Ti0 = Rici0 = hαβRm(h)αi0β

= gklRm(h)ki0l

= gkl (Kil,k − Kkl,i )

= divgK −∇g trgK ,

where α, β run on space-time indices, k, l run on space indices, g = h|Mn and K is
the second fundamental form of Mn × {0} ⊂ Mn. This is just the Codazzi
equation.
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The constraint equations II

An analogous computation using the Gauss equations shows that if (Mn × R, h)
solves the Einstein equations, then g = h|Mn and K satisfy the so-called constraint
equations:

{
R(g) + (trgK )2 − |K |2g = 2ρ,

divgK −∇(trgK ) = J,
(C)

where we have let
ρ = T (~n, ~n), J = T (~n, ·).

The constraint equations are a system of equations on Mn, whose unknowns are
(g ,K , ρ, J). They are a necessary condition to the existence of solutions of the
Einstein equations in Mn × R. A celebrated result of Choquet-Bruhat (’52) and
Choquet-Bruhat-Geroch (’69) shows that they also are a sufficient condition.

Solving (C) therefore determines the admissible initial-data sets for the Einstein
equations: we’ll focus on its resolution and on the properties of some of its
solutions in the rest of this talk.
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Our approach: parameterizing the initial-data sets

Let (Mn, g) be a Riemannian manifold and consider in Mn:{
R(g) + (trgK )2 − |K |2g = 2ρ,

divgK −∇(trgK ) = J,
(C)

The main feature of the constraint equations is their underdetermination: they
have ≥ n(n + 1) unknowns for n + 1 equations.

Today we will approach the constraint equations via the so-called conformal
method which aims at making the system determined by obtaining an explicit
parameterization of initial-data sets in terms of an arbitrary subset of data.

We won’t dwell on other techniques, e.g. glueing methods, which proved
extremely useful to construct solutions of (C) in a variety of geometric settings
(see e.g. Chruściel-Isenberg-Pollack ’05, Corvino-Schoen ’06, Carlotto-Schoen ’15,
Chruściel-Delay ’18, etc...).
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The conformal method

The conformal method was initiated by Lichnerowicz (’48) in the maximal case
τ ≡ 0

an later developed by Choquet-Bruhat and York (’74).

To make the system determined, we reduce the number of unknowns and
arbitrarily specify some of them which are then considered as a data of the
problem. One looks for initial data (g ,K ) as:

g = u
4

n−2 g0, for some unknown u > 0, where g0 is some fixed Riemannian
metric in Mn.

K =
τ

n
u

4
n−2 g0 + u−2 (σ + Lg0W ) ,

where W ∈
∧1(T ∗M) is unknown, divg0σ = 0, trg0σ = 0 is given and

Lg0Wij = ∇iWj +∇jWi −
2
n
divg0W (g0)ij .

In other words, we specified the conformal class of g , the trace τ of K and its
divergence-free and trace-free part (up to u).
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The scalar constraint equation I
Consider for instance the scalar constraint equation:

R(g) + (trgK )2 − |K |2g = 2ρ.

The scalar curvature of g = u
4

n−2 g0 satisfies the conformal invariance relation:

R(u
4

n−2 g0) = u−
n+2
n−2

(
4(n − 1)

n − 2
4g0u + R(g0)u

)
,

so that the scalar constraint equation becomes:

u−
n+2
n−2

(
4(n − 1)

n − 2
4g0u + R(g0)u

)
= 2ρ− τ2 + u−

8
n−2 |K |2g0

.

Using the splitting
K =

τ

n
u

4
n−2 g0 + u−2 (σ + Lg0W )

we get that u and W satisfy:

4(n − 1)

n − 2
4g0u + R(g0)u =

(
2ρ− n − 1

n
τ2
)
u

n+2
n−2 + |σ + Lg0W |

2
g0
u−

3n−2
n−2 .
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The scalar constraint equation II

In the framework of a scalar-field theory ρ and J depend on Ψ|Mn and ∂tΨ|Mn .

Precisely:
2ρ = 2V (Ψ|Mn) + (∂tΨ|Mn)2 +

∣∣∇Ψ|Mn

∣∣2
g
.

For convenience, we scale these two quantities too and let:

ψ = Ψ|Mn and π = u
2n

n−2 ∂tΨ|Mn .

Therefore
2ρ = 2V (ψ) + u−

4n
n−2π2 + u−

4
n−2 |∇ψ|2g0

,

so that the scalar constraint equation becomes:

4(n − 1)

n − 2
4g0u + (R(g0)− |∇ψ|2g )u

=
(
2V (ψ)− n − 1

n
τ2)u n+2

n−2 +
π2 + |σ + Lg0W |2g0

u
3n−2
n−2

.
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The Einstein-Lichnerowicz system
Transforming in the same way the vector equation shows that an initial-data set

(g ,K , ρ, J) =
(
u

4
n−2 g0,

τ

n
u

4
n−2 g0 + u−2 (σ + Lg0W ) , ψ, u−

2n
n−2π) (1.1)

solves the constraint equations in Mn

if and only if (u,W ) satisfy the so-called
Einstein-Lichnerowicz system in Mn:

4(n − 1)

n − 2
4g0u + h(g0, ψ)u = f (τ, ψ,V )u2∗−1 +

π2 + |σ + Lg0W |2g0

u2∗+1 ,

−→
4g0W = −n − 1

n
u2∗
∇τ − π∇ψ,

(1.2)

where in (??) we have let 2∗ = 2n
n−2 , 4g0 = −divg0(∇·),

−→
4g0W = −divg0 (Lg0W ), and where the coefficient functions h and f depend on
the physics data (τ, ψ, π,V ) that we arbitrarily chose in the conformal method:

h(g0, ψ) = R(g0)− |∇ψ|2g , f (τ, ψ,V ) = 2V (ψ)− n − 1
n

τ2.
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The setting I

From now on, (Mn, g) will denote a compact Riemannian manifold without
boundary. For simplicity we replace g0 by g and look for solutions (u,W ) in M,
u > 0, of the Einstein-Lichnerowicz system:


4(n − 1)

n − 2
4gu + h(g , ψ)u = f (τ, ψ,V )u2∗−1 +

π2 + |σ + LgW |2g
u2∗+1 ,

−→
4gW = −n − 1

n
u2∗
∇τ − π∇ψ,

(SD)

with h(g0, ψ) = R(g0)− |∇ψ|2g and:

f (τ, ψ,V ) = 2V (ψ)− n − 1
n

τ2.

The coefficients (V , ψ, π, τ, σ) are the part of the initial-data that was arbitrarily
fixed during the conformal method. We shall call it the physics data and label it
D = (V , ψ, π, τ, σ). We will sometimes say that (??) is the Einstein-Lichnerowicz
system with physics data D.
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The setting II: focusing and defocusing case
4(n − 1)

n − 2
4gu + h(g , ψ)u = f (τ, ψ,V )u2∗−1 +

π2 + |σ + LgW |2g
u2∗+1 ,

−→
4gW = −n − 1

n
u2∗
∇τ − π∇ψ,

(SD)

Definition
We say that SD is

in the focusing case if f (τ, ψ,V ) > 0.
in the defocusing case if f (τ, ψ,V ) ≤ 0.

Recall that:
f (τ, ψ,V ) = 2V (ψ)− n − 1

n
τ2.

So the vacuum case Ψ ≡ 0 and V ≡ 0, is defocusing. In general, the focusing
case is a matter case.

These two regimes exhibit a very different behavior analytically speaking.

Bruno Premoselli (Université Libre de Bruxelles (ULB))Conformal method in the focusing case April 16, 2019 15 / 33



The setting II: focusing and defocusing case
4(n − 1)

n − 2
4gu + h(g , ψ)u = f (τ, ψ,V )u2∗−1 +

π2 + |σ + LgW |2g
u2∗+1 ,

−→
4gW = −n − 1

n
u2∗
∇τ − π∇ψ,

(SD)

Definition
We say that SD is

in the focusing case if f (τ, ψ,V ) > 0.
in the defocusing case if f (τ, ψ,V ) ≤ 0.

Recall that:
f (τ, ψ,V ) = 2V (ψ)− n − 1

n
τ2.

So the vacuum case Ψ ≡ 0 and V ≡ 0, is defocusing. In general, the focusing
case is a matter case.

These two regimes exhibit a very different behavior analytically speaking.

Bruno Premoselli (Université Libre de Bruxelles (ULB))Conformal method in the focusing case April 16, 2019 15 / 33



The setting II: focusing and defocusing case
4(n − 1)

n − 2
4gu + h(g , ψ)u = f (τ, ψ,V )u2∗−1 +

π2 + |σ + LgW |2g
u2∗+1 ,

−→
4gW = −n − 1

n
u2∗
∇τ − π∇ψ,

(SD)

Definition
We say that SD is

in the focusing case if f (τ, ψ,V ) > 0.

in the defocusing case if f (τ, ψ,V ) ≤ 0.

Recall that:
f (τ, ψ,V ) = 2V (ψ)− n − 1

n
τ2.

So the vacuum case Ψ ≡ 0 and V ≡ 0, is defocusing. In general, the focusing
case is a matter case.

These two regimes exhibit a very different behavior analytically speaking.

Bruno Premoselli (Université Libre de Bruxelles (ULB))Conformal method in the focusing case April 16, 2019 15 / 33



The setting II: focusing and defocusing case
4(n − 1)

n − 2
4gu + h(g , ψ)u = f (τ, ψ,V )u2∗−1 +

π2 + |σ + LgW |2g
u2∗+1 ,

−→
4gW = −n − 1

n
u2∗
∇τ − π∇ψ,

(SD)

Definition
We say that SD is

in the focusing case if f (τ, ψ,V ) > 0.
in the defocusing case if f (τ, ψ,V ) ≤ 0.

Recall that:
f (τ, ψ,V ) = 2V (ψ)− n − 1

n
τ2.

So the vacuum case Ψ ≡ 0 and V ≡ 0, is defocusing. In general, the focusing
case is a matter case.

These two regimes exhibit a very different behavior analytically speaking.

Bruno Premoselli (Université Libre de Bruxelles (ULB))Conformal method in the focusing case April 16, 2019 15 / 33



The setting II: focusing and defocusing case
4(n − 1)

n − 2
4gu + h(g , ψ)u = f (τ, ψ,V )u2∗−1 +

π2 + |σ + LgW |2g
u2∗+1 ,

−→
4gW = −n − 1

n
u2∗
∇τ − π∇ψ,

(SD)

Definition
We say that SD is

in the focusing case if f (τ, ψ,V ) > 0.
in the defocusing case if f (τ, ψ,V ) ≤ 0.

Recall that:
f (τ, ψ,V ) = 2V (ψ)− n − 1

n
τ2.

So the vacuum case Ψ ≡ 0 and V ≡ 0, is defocusing. In general, the focusing
case is a matter case.

These two regimes exhibit a very different behavior analytically speaking.

Bruno Premoselli (Université Libre de Bruxelles (ULB))Conformal method in the focusing case April 16, 2019 15 / 33



The setting II: focusing and defocusing case
4(n − 1)

n − 2
4gu + h(g , ψ)u = f (τ, ψ,V )u2∗−1 +

π2 + |σ + LgW |2g
u2∗+1 ,

−→
4gW = −n − 1

n
u2∗
∇τ − π∇ψ,

(SD)

Definition
We say that SD is

in the focusing case if f (τ, ψ,V ) > 0.
in the defocusing case if f (τ, ψ,V ) ≤ 0.

Recall that:
f (τ, ψ,V ) = 2V (ψ)− n − 1

n
τ2.

So the vacuum case Ψ ≡ 0 and V ≡ 0, is defocusing.

In general, the focusing
case is a matter case.

These two regimes exhibit a very different behavior analytically speaking.

Bruno Premoselli (Université Libre de Bruxelles (ULB))Conformal method in the focusing case April 16, 2019 15 / 33



The setting II: focusing and defocusing case
4(n − 1)

n − 2
4gu + h(g , ψ)u = f (τ, ψ,V )u2∗−1 +

π2 + |σ + LgW |2g
u2∗+1 ,

−→
4gW = −n − 1

n
u2∗
∇τ − π∇ψ,

(SD)

Definition
We say that SD is

in the focusing case if f (τ, ψ,V ) > 0.
in the defocusing case if f (τ, ψ,V ) ≤ 0.

Recall that:
f (τ, ψ,V ) = 2V (ψ)− n − 1

n
τ2.

So the vacuum case Ψ ≡ 0 and V ≡ 0, is defocusing. In general, the focusing
case is a matter case.

These two regimes exhibit a very different behavior analytically speaking.

Bruno Premoselli (Université Libre de Bruxelles (ULB))Conformal method in the focusing case April 16, 2019 15 / 33



The setting II: focusing and defocusing case
4(n − 1)

n − 2
4gu + h(g , ψ)u = f (τ, ψ,V )u2∗−1 +

π2 + |σ + LgW |2g
u2∗+1 ,

−→
4gW = −n − 1

n
u2∗
∇τ − π∇ψ,

(SD)

Definition
We say that SD is

in the focusing case if f (τ, ψ,V ) > 0.
in the defocusing case if f (τ, ψ,V ) ≤ 0.

Recall that:
f (τ, ψ,V ) = 2V (ψ)− n − 1

n
τ2.

So the vacuum case Ψ ≡ 0 and V ≡ 0, is defocusing. In general, the focusing
case is a matter case.

These two regimes exhibit a very different behavior analytically speaking.

Bruno Premoselli (Université Libre de Bruxelles (ULB))Conformal method in the focusing case April 16, 2019 15 / 33



An illustration: existence theory in the decoupled case
Under the assumption ∇τ ≡ 0

(the spacetime mean curvature is constant) the
system becomes the EL equation:

4(n − 1)

n − 2
4gu + h(g , ψ)u = f (τ, ψ,V )u2∗−1 +

π2 + |σ|2g
u2∗+1 .

Here we assume that (π, σ) 6= (0, 0). The behavior of the set of solutions changes
drastically according to the sign of f :

When f (τ, ψ,V ) ≤ 0 (defocusing), solutions are classified by the sub- and
super-solution method (Isenberg ’95) and are unique when they exist, except
in one extreme case.
When f (τ, ψ,V ) > 0 (focusing), the first existence result is in
Hebey-Pacard-Pollack (’07). Solutions only exist for a limited set of
coefficients, and there are generically two solutions (P., ’14). Their
bifurcation diagram can be complex, with multiple pitchfork bifurcations
(Bizón-Pletka-Simon ’15, Chruściel-Gicquaud ’17) and in pathological cases
the equation can have an infinite number of (non-compact) solutions
(P.-Wei, ’15).
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Existence theory in the decoupled case II
In the coupled case ∇τ 6≡ 0, existence results are for instance:

for the defocusing case f ≤ 0: Maxwell (’04, ’08), Holst-Nagy-Tsogtgerel
(’08), Dahl-Gicquaud-Humbert (’13)

for the focusing case f > 0: P. (’13), Gicquaud-Nguyen (’16), P. (’16)

The situation remains bad in general: in the fully coupled case ∇τ 6≡ 0 one loses
uniqueness even in the defocusing case (Dilts-Holst-Kozareva-Maxwell, ’18).

When multiple solutions exist, it is often impossible to choose a preferred “physical
solution”. In order to understand the solutions produced by the conformal method
we therefore ask the following questions:

What can we say about the set of solutions of the Einstein-Lichnerowicz system?
Is it compact in some strong topology, say C 2(M)?

How does it behave with respect to perturbations of the physics data?

We now introduce a notion of stability to answer these questions and investigate
the “well-posedness” of the conformal method.
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the “well-posedness” of the conformal method.
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Elliptic stability: definition
Recall that if D = (V , ψ, π, τ, σ) are physics data, the Einstein-Lichnerowicz
system with physics data D is:


4(n − 1)

n − 2
4gu + h(g , ψ)u = f (τ, ψ,V )u2∗−1 +

π2 + |σ + LgW |2g
u2∗+1 ,

−→
4gW = −n − 1

n
u2∗
∇τ − π∇ψ.

(SD)

Definition ((Elliptic) Stability of system SD)
Let D = (V , ψ, π, τ, σ) be given physics data. Let Dα = (Vα, ψα, πα, τα, σα)α be
a sequence of physics data converging to D in C 2(M) (the regularity can be
weakened).

We say that the system SD is stable if there exists Cθ > 0 such that, for any
sequence Dα converging towards D, and for any sequence (uα,Wα)α of solutions
of SDα ,

‖uα‖C2,θ(M) + ‖LgWα‖C1,θ(M) ≤ C for any α.
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Equivalent formulations and remarks

Saying that SD is stable amounts to say that the set of solutions of SD is a
priori bounded in C 2,θ(M) for any 0 < θ < 1

uniformly in the choice of its
coefficients (that is, uniformly in the choice of D).

Stability implies compactness: if SD is compact, its set of solutions is
compact in the C 2(M) topology.

The stability of SD implies in particular that any sequence (uα,Wα)α of
solutions of Einstein-Lichnerowivz systems with perturbed physics data Dα
converges in C 2(M), up to a subsequence, to some solution of the limiting
system SD.

In the definition we can only require a priori bounds on LgWα (and not Wα)
since the system is invariant up to adding to Wα a conformal Killing field
(satisfying LgZ = 0).

In the second lecture we will state and prove some stability results.
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Thank you for your attention!

(End of Lecture 1 and coffe break for everyone)
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The definition again (a variant)

Definition ((Elliptic) Stability of system SD)

We say that the system SD is stable if, for any 0 < θ < 1, there exists Cθ > 0 and
εθ > 0 such that for any choice of physics data D′ with

‖D − D′‖C2(M) < εθ,

and for any solution (u,W ) of the Einstein-Lichnerowicz D′, we have

‖u‖C2,θ(M) + ‖LgW ‖C1,θ(M) ≤ Cθ.

The statement of the stability results (and their proofs) again heavily depend on
the focusing or defocusing setting.
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Compactness in the defocusing case

In the defocusing vacuum case, a compactness result is available:

Theorem (Dahl-Gicquaud-Humbert ’13)
Assume that τ 6= 0 and (M, g) has no conformal Killing fields. Assume that for
any ε ∈ (0, 1] the following equation in Mn admits no non-trivial solutions
W ∈

∧1(T ∗M):
−→
4gW = ε

√
n − 1
n
|LgW |

dτ

τ
.

Then the set of solutions of the vacuum Einstein-Lichnerowicz system is
non-empty and compact in C 2(M).
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Sketch of the proof in the defocusing case
Let (ui ,Wi ) be a sequence of solutions of the vacuum constraint system:


4(n − 1)

n − 2
4gui + R(g)ui = −n − 1

n
τ2u2∗−1

i +
|σ + LgWi |2g

u2∗+1
i

,

−→
4gWi = −n − 1

n
u2∗−δi
i ∇τ

where δi → 0, δi > 0. (Remember: 2∗ = 2n
n−2 .)

Assume that ui and Wi blow-up, let γi = ‖LgWi‖L2(M) → +∞. Comparison and

bootstrap arguments show that γ−1
i Wi and γ

− n−2
4n

i ui converge, respectively in in
C 1(M) and L∞(M), towards W∞ and u∞. And that W∞ 6≡ 0 satisfies:

−→
4gW∞ = ε

√
n − 1
n
|LgW∞|

dτ

τ

where ε = lim γ
−c(n)εi
i (up to a constant). Blow-up is global here:

Wi ∼ γi (W∞ + o(1)), ui ∼ γ
n−2
4n

i (u∞ + o(1)) in M

and is governed by a limiting equation in M.
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Elliptic Stabiliy: the results in the focusing case

The situation is different in the focusing case:

Theorem (Druet-P., ’14 – P., ’15)
Let (Mn, g) be a closed locally conformally flat manifold of dimension n ≥ 3. Let
D = (V , ψ, π, τ, σ) be some focusing physics data, i.e. with f (τ, ψ,V ) > 0. The
Einstein-Lichnerowicz system SD is stable under the following assumptions:

π 6≡ 0 if 3 ≤ n ≤ 5,
π 6≡ 0 and ψ and τ have no common critical points if n ≥ 6.

.

Generalizes previous results for the decoupled case by Druet-Hebey (’08) and
Hebey-Veronelli (’12).

The Theorem covers the setting of a positive cosmological constant V ≡ Λ > 0
(e.g. in the maximal case τ ≡ 0). The vacuum case f (τ, ψ,V ) ≤ 0 is not covered
here. Matter creates stability for the Einstein-Lichnerowicz system.
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A remark on the assumptions

The assumptions of the Theorem are generic in the choice of D.

As soon as they
are not met, pathological phenomena (= non compact sequences of solutions)
occur (P.-Wei ’15, P. ’16).

Conditions ensuring the stability of the system are local here. As we shall see in
the proof, they occur in order to rule out concentration phenomena. For this same
reason we also need convergence of D in C 2(M) (the convergence can be lowered
according to the dimension).
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The proof: understanding concentration phenomena

The proof proceeds by contradiction. Let (uα,Wα)α be a sequence of solutions of
the system and assume that it blows-up:

‖u‖C0(M) + ‖LgW ‖C0(M) → +∞

as α→ +∞. These norms are weaker than the ones in the stability definition, but
it’s enough to consider them by elliptic theory.

Let µα > 0, µα → 0 be defined by:

µ−nα := max
M

(
u

2n
n−2
α + |LgWα|g

)
.

If xα is the point where this maximum is attained, we let, for x ∈ Rn:

vα(x) = µ
n−2
2

α exp∗xα uα(µαx) and Xα(x) = µn−1
α exp∗xα Wα(µαx)

be the rescalings of uα and Wα at distances comparable to µα to xα.
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We can then prove that vα and Xα converge in C 1,η
loc (Rn), towards non-zero

solutions (U,X ) of {
4ξU = f (x0)U2∗−1,
−→
4gX = 0.

where x0 = lim xα. (The convergence of Xα is highly non-trivial and follows from
the structure of the system).

Solutions of the first equation are classified, and this describes the local behavior
around some (actually, any) concentration point.

The proof then consists in understanding the mutual interactions of the different
concentration points.
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Step 1: Detection of blow-up points

Proposition
There exists a sequence (Nα)α, Nα ≥ 2 and sequences of points
(x1,α, . . . , xNα,α)α in M such that:

∇uα(xi,α) = 0 for 1 ≤ i ≤ Nα,

dg (xi,α, xj,α)
1
2 uα(xi,α) ≥ 1 for i , j ∈ {1, . . . ,Nα}, i 6= j and

for any x ∈ M:(
min

i=1,...,Nα
dg (xi,α, x)

)n (
uα(x)2∗

+ |LgWα|g (x)
)
≤ C .

The number Nα can a priori go to +∞ since we did not assume anything on the
energy of (uα,Wα). We expect (x1,α, . . . , xNα,α) to exhaust the set of
concentration points.
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Step 2: Sharp asymptotics around a concentration point

Denote by ρi,α the maximum radius around which the concentration point xi,α is
dominant.

We obtain sharp asymptotics for the blow-up on Bxi,α(ρi,α):

Proposition
ρi,α −→

α→+∞
0

∇τα(xi,α) −→
α→+∞

0 and ∇fα(xi,α) −→
α→+∞

0 (localisation),

uα ∼ µ
n−2
2

i,α

(
µ2
i,α + dg (xi,α, x)2

)− n−2
2 in C 0(Bxi,α (ρi,α)), where

µi,α =
(

maxBxi,α
(ρi,α) uα

)− 2
n−2

,

|LgWα|g ∼ µ
n−1
i,α ρ−nα

(
µ2
i,α + dg (xi,α, x)2

)− n−1
2

in C 0(Bxi,α(ρi,α)).

Bruno Premoselli (Université Libre de Bruxelles (ULB))Conformal method in the focusing case April 16, 2019 30 / 33



Step 2: Sharp asymptotics around a concentration point

Denote by ρi,α the maximum radius around which the concentration point xi,α is
dominant. We obtain sharp asymptotics for the blow-up on Bxi,α(ρi,α):

Proposition
ρi,α −→

α→+∞
0

∇τα(xi,α) −→
α→+∞

0 and ∇fα(xi,α) −→
α→+∞

0 (localisation),

uα ∼ µ
n−2
2

i,α

(
µ2
i,α + dg (xi,α, x)2

)− n−2
2 in C 0(Bxi,α (ρi,α)), where

µi,α =
(

maxBxi,α
(ρi,α) uα

)− 2
n−2

,

|LgWα|g ∼ µ
n−1
i,α ρ−nα

(
µ2
i,α + dg (xi,α, x)2

)− n−1
2

in C 0(Bxi,α(ρi,α)).

Bruno Premoselli (Université Libre de Bruxelles (ULB))Conformal method in the focusing case April 16, 2019 30 / 33



Step 2: Sharp asymptotics around a concentration point

Denote by ρi,α the maximum radius around which the concentration point xi,α is
dominant. We obtain sharp asymptotics for the blow-up on Bxi,α(ρi,α):

Proposition
ρi,α −→

α→+∞
0

∇τα(xi,α) −→
α→+∞

0 and ∇fα(xi,α) −→
α→+∞

0 (localisation),

uα ∼ µ
n−2
2

i,α

(
µ2
i,α + dg (xi,α, x)2

)− n−2
2 in C 0(Bxi,α (ρi,α)), where

µi,α =
(

maxBxi,α
(ρi,α) uα

)− 2
n−2

,

|LgWα|g ∼ µ
n−1
i,α ρ−nα

(
µ2
i,α + dg (xi,α, x)2

)− n−1
2

in C 0(Bxi,α(ρi,α)).

Bruno Premoselli (Université Libre de Bruxelles (ULB))Conformal method in the focusing case April 16, 2019 30 / 33



Step 2: Sharp asymptotics around a concentration point

Denote by ρi,α the maximum radius around which the concentration point xi,α is
dominant. We obtain sharp asymptotics for the blow-up on Bxi,α(ρi,α):

Proposition
ρi,α −→

α→+∞
0

∇τα(xi,α) −→
α→+∞

0 and ∇fα(xi,α) −→
α→+∞

0 (localisation),

uα ∼ µ
n−2
2

i,α

(
µ2
i,α + dg (xi,α, x)2

)− n−2
2 in C 0(Bxi,α (ρi,α)), where

µi,α =
(

maxBxi,α
(ρi,α) uα

)− 2
n−2

,

|LgWα|g ∼ µ
n−1
i,α ρ−nα

(
µ2
i,α + dg (xi,α, x)2

)− n−1
2

in C 0(Bxi,α(ρi,α)).

Bruno Premoselli (Université Libre de Bruxelles (ULB))Conformal method in the focusing case April 16, 2019 30 / 33



Step 2: Sharp asymptotics around a concentration point

Denote by ρi,α the maximum radius around which the concentration point xi,α is
dominant. We obtain sharp asymptotics for the blow-up on Bxi,α(ρi,α):

Proposition
ρi,α −→

α→+∞
0

∇τα(xi,α) −→
α→+∞

0 and ∇fα(xi,α) −→
α→+∞

0 (localisation),

uα ∼ µ
n−2
2

i,α

(
µ2
i,α + dg (xi,α, x)2

)− n−2
2 in C 0(Bxi,α (ρi,α)),

where

µi,α =
(

maxBxi,α
(ρi,α) uα

)− 2
n−2

,

|LgWα|g ∼ µ
n−1
i,α ρ−nα

(
µ2
i,α + dg (xi,α, x)2

)− n−1
2

in C 0(Bxi,α(ρi,α)).

Bruno Premoselli (Université Libre de Bruxelles (ULB))Conformal method in the focusing case April 16, 2019 30 / 33



Step 2: Sharp asymptotics around a concentration point

Denote by ρi,α the maximum radius around which the concentration point xi,α is
dominant. We obtain sharp asymptotics for the blow-up on Bxi,α(ρi,α):

Proposition
ρi,α −→

α→+∞
0

∇τα(xi,α) −→
α→+∞

0 and ∇fα(xi,α) −→
α→+∞

0 (localisation),

uα ∼ µ
n−2
2

i,α

(
µ2
i,α + dg (xi,α, x)2

)− n−2
2 in C 0(Bxi,α (ρi,α)), where

µi,α =
(

maxBxi,α
(ρi,α) uα

)− 2
n−2

,

|LgWα|g ∼ µ
n−1
i,α ρ−nα
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Step 3: Interactions between different concentration points
and contradiction
The contradiction will be obtained by analyzing the interactions between the
different concentration points.

We let:

dα = min
i 6=j≤Nα

dg (xi,α, xj,α)

be the minimum distance between two concentration points. We will prove that
both dα → 0 and dα 6→ 0.

The local analysis of the previous step showed that:

dα → 0

as α→ +∞. This heavily relied on the assumptions on the physics data of the
theorem.

On the other side, if dα → 0, it is possible to prove that (uα,Wα) blows-up with
the same speed at each concentration point. Therefore, uα and Wα cannot be
exactly equivalent to a rescaled limiting profile at first order. Hence dα 6→ 0.
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Final Remark: Elliptic Stability as a tool

We described elliptic stability here as a way to justify that the solutions
constructed by the conformal method are well-behaved.

It is in general a powerful
tool to address existence issues via the a priori estimates it provides.

It was used to prove the generic existence of two solutions of the
Einstein-Lichnerowicz equation in the focusing case (P. ’14)
It has very recently been used to prove involved existence results in the
non-variational setting of the so-called volumetric drift method (Vâlcu, ’19).
There elliptic stability is required in order to apply topological methods.
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Thank you for your attention!
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