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Positive energy for asymptotically flat manifolds
space-dimension n

Theorem (Lohkamp 2016; Schoen, Yau, 2017)
The ADM mass of n-dimensional asymptotically flat
Riemannian manifolds, n ≥ 3, is non-negative,
and vanishes only for Euclidean space.

1 Known previously in dimensions n ≤ 7 (Schoen & Yau
1981, 1989)

2 or assuming that the manifold admits a spin structure
(Witten, 1981)

3 Lohkamp 2017: the energy-momentum vector is timelike
future pointing

4 Huang, Lee 2018: and vanishes only for Minkowskian
initial data
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Asymptotically hyperbolic metrics
Geometric formulae for total energy (Ashtekar Romano 1992; Herzlich 2015; Chruściel,
Barzegar, Höerzinger 2017), space-dimension n

g→r→∞ g = −V 2dt2 + V−2dr2 + r2dΩ2 , V = r2 + 1 .

• For any Killing vector X of g we have

Hb (X ,S ) =
1

16(n − 2)π
lim

R→∞

∫
t=0,r=R

X νZ ξWαβ
νξdSαβ ,

where Wαβ
νξ is the Weyl tensor of g and Z = r∂r is the dilation

vector field

• Riemannian version, asymptotically hyperbolic Riemannian
metrics g, Ri

j is the Ricci tensor of g:

Hb (X ,S ) = − 1
16(n − 2)π

lim
R→∞

∫
r=R

X 0V Z j(Ri
j −

R
n
δi

j )dSi .
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Positive energy for asymptotically hyperbolic manifolds
space-dimension n

Theorem (with P. T. Chruściel, arXiv:1901.05263)
The energy-momentum vector of n-dimensional AH manifolds
(M,g) with R(g) ≥ −n(n − 1) , n ≥ 3, is timelike future pointing
or null.

1 Known since 2001 for spin manifolds by Witten-type
methods (Wang , Chruściel-Herzlich, see also Min-Oo
1989 for rigidity).

2 Different story if conformal infinity is not spherical
3 Huang, Jang, Martin (2019?): vanishes only for hyperbolic

space
4 Key previous partial results by Andersson, Cai & Galloway

2008
5 and the Maskit gluing by Isenberg, Lee & Stavrov 2010
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Positive energy for asymptotically hyperbolic manifolds
Maskit gluing

Theorem (Isenberg, Lee & Stavrov 2010, with P.T. Chruściel
JDG 2018)
Given two asymptotically hyperbolic vacuum initial data sets
one can construct a new one by making a connected sum at
the conformal boundary at infinity. The construction can be
localised by a Carlotto-Schoen type hyperbolic gluing.
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1 If the energy-momentum vector were spacelike, one could
use a Maskit gluing to make it timelike past pointing
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Andersson, Cai & Galloway 2008 and by Chruściel,
Galloway, Nguyen & Paetz 2018
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Positive energy for asymptotically hyperbolic manifolds
Energy-momentum vector and localised Maskit gluing

Glue the hyperbolic metric on a ”small” part near infinity
m1 → mε

1, m2 → mε
2. Use hyperbolic isometries such that :
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Positive energy for asymptotically hyperbolic manifolds
Energy-momentum vector and localised Maskit gluing

The ”small Hn” part becames a ”half Hn”.

mε
1 → Λ1

εmε
1 and mε

2 → Λ2
εmε

2. Cut and paste :
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Positive energy for asymptotically hyperbolic manifolds
space-dimension n

Theorem (Andersson, Cai, Galloway 2008, Chruściel, Galloway,
Nguyen, Paetz 2018)
The mass aspect function

energy-momentum vector

of
n-dimensional asymptotically hyperbolic Riemannian manifolds,
3 ≤ n ≤ 7, cannot be negative (everywhere).

1 Uses a deformation argument independent of dimension,
and a positivity theorem valid for 3 ≤ n ≤ 7

2 Different story if conformal infinity is not spherical
3 One can use the Lohkamp – Schoen-Yau theorem to

remove the dimension assumption [Chruściel-D 2019]
4 This version uses another deformation argument for n ≥ 4
5 (for n = 3 this is immediate by Witten-type arguments,

since all three dimensional manifolds are spin)
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Nguyen, Paetz 2018)
The mass aspect function

energy-momentum vector

of
n-dimensional asymptotically hyperbolic Riemannian manifolds,
3 ≤ n ≤ 7, cannot be negative (everywhere).

g = x−2
(

dx2 +
(

hAB(yC) + xnµAB(yC)
)

dyAdyB + lower order
)
,

where yA are coordinates at the conformal boundary at infinity,

m0 =

∫
Sn−1

Θ dn−1y ,

where the mass aspect function is defined as

Θ = hABµAB .

1 Uses a deformation argument independent of dimension,
and a positivity theorem valid for 3 ≤ n ≤ 7

2 Different story if conformal infinity is not spherical
3 One can use the Lohkamp – Schoen-Yau theorem to

remove the dimension assumption [Chruściel-D 2019]
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Positive energy for asymptotically hyperbolic manifolds
space-dimension n

Theorem (Andersson, Cai, Galloway 2008, Chruściel, Galloway,
Nguyen, Paetz 2018)

The ///////mass /////////aspect ///////////function energy-momentum vector of
n-dimensional asymptotically hyperbolic Riemannian manifolds,
3 ≤ n ≤ 7///// , cannot be ///////////negative timelike past pointing.

1 Uses a deformation argument independent of dimension,
and a positivity theorem valid for 3 ≤ n ≤ 7
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Positive energy for asymptotically hyperbolic manifolds
Results for the non spin case
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Positive energy for asymptotically hyperbolic manifolds
m can not be timelike past pointing :

If m timelike past pointing, ∃g = hyp outside compact set and
R(g) ≥ −n(n − 1) = 2Λ [ACG2008].

Let g = g and K = −g

:

hyperboloı̈d outside of a compact set

and

R(g)− |K |2g + (Trg K )2 ≥ 0.
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Positive energy for asymptotically hyperbolic manifolds
m can not be timelike past pointing :

Change in R1,n the hyperoloı̈d near infinty by an horizontal
hyperplane (just a graph, R(g)− |K |2g + (Trg K )2 = 0 there)

rigid part of AF PET⇒ (M,g,K ) slice in R1,n ⇒ M spin⇒
(M,g) hyperbolic space (rigid part of spin AH PMT)⇒ m = 0.
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Positive energy for asymptotically hyperbolic manifolds
m can not be spacelike :

If m is spacelike with positive time component

Use an hyperbolic isometry such that :
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Positive energy for asymptotically hyperbolic manifolds
m can not be spacelike :

m becames spacelike with negative time component:

We may assume this is the case.
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Positive energy for asymptotically hyperbolic manifolds
m can not be spacelike :

If m1 = (m1
0,~m1) and m2 = (m1

0,−~m1) = Rπm1, m1
0 < 0.

If m = m1 + m2 = (m1
0, ~m

1) + (m1
0,−~m1) = (2m1

0,
~0). Not the

case but we have :
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Positive energy for asymptotically hyperbolic manifolds
m can not be spacelike :

mε = Λ1
εm

1,ε + Λ2
εm

2,ε = Λ1
εm

1,ε + RπΛ1
εm

1,ε

= (Λ1
ε + RπΛ1

ε)(m1 + m1,ε −m1)

= γε

(
2(m1

0 − vεm1
1︸ ︷︷ ︸

<0

, ~0) +

γ−1
ε Λ1

ε

( (
1 + (Λ1

ε)−1RπΛ1
ε

)
(m1,ε −m1)︸ ︷︷ ︸

=:(∗)

))
.

|(∗)| ≡ |
(
1 + (Λ1

ε)−1RπΛ1
ε

)
(m1,ε −m1)|

≤ C(1 + ε−2)|m1,ε −m1| ≤ C2o(ε
n
2−2) ,

For ε small mε timelike past pointing, not possible!
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Positive energy for asymptotically hyperbolic manifolds
Thank you

THANK YOU !

Erwann Delay The hyperbolic positive energy theorem


