The hyperbolic positive energy theorem

Erwann Delay

University of Avignon

Lyon, April 2019

joint work with P.T. Chruściel (the slides too!)

Erwann Delay The hyperbolic positive energy theorem

Theorem (Lohkamp 2016; Schoen, Yau, 2017)

The ADM mass of n-dimensional asymptotically flat Riemannian manifolds, $n \ge 3$, is non-negative, and vanishes only for Euclidean space.

・ロ・ ・ 四・ ・ 回・ ・ 回・

Theorem (Lohkamp 2016; Schoen, Yau, 2017)

The ADM mass of n-dimensional asymptotically flat Riemannian manifolds, $n \ge 3$, is non-negative, and vanishes only for Euclidean space.

- Known previously in dimensions $n \le 7$ (Schoen & Yau 1981, 1989)
- or assuming that the manifold admits a spin structure (Witten, 1981)
- 3 Lohkamp 2017: the energy-momentum vector is timelike future pointing
- Huang, Lee 2018: and vanishes only for Minkowskian initial data

Theorem (Lohkamp 2016; Schoen, Yau, 2017)

The ADM mass of n-dimensional asymptotically flat Riemannian manifolds, $n \ge 3$, is non-negative, and vanishes only for Euclidean space.

- Known previously in dimensions n ≤ 7 (Schoen & Yau 1981, 1989)
- or assuming that the manifold admits a spin structure (Witten, 1981)
- Icohkamp 2017: the energy-momentum vector is timelike future pointing
- Huang, Lee 2018: and vanishes only for Minkowskian initial data

・ロ・ ・ 四・ ・ 回・ ・ 回・

臣

Theorem (Lohkamp 2016; Schoen, Yau, 2017)

The ADM mass of n-dimensional asymptotically flat Riemannian manifolds, $n \ge 3$, is non-negative, and vanishes only for Euclidean space.

- Known previously in dimensions n ≤ 7 (Schoen & Yau 1981, 1989)
- or assuming that the manifold admits a spin structure (Witten, 1981)
- Lohkamp 2017: the energy-momentum vector is timelike future pointing

Huang, Lee 2018: and vanishes only for Minkowskian initial data

・ロ・ ・ 四・ ・ 回・ ・ 回・

크

Theorem (Lohkamp 2016; Schoen, Yau, 2017)

The ADM mass of n-dimensional asymptotically flat Riemannian manifolds, $n \ge 3$, is non-negative, and vanishes only for Euclidean space.

- Known previously in dimensions n ≤ 7 (Schoen & Yau 1981, 1989)
- or assuming that the manifold admits a spin structure (Witten, 1981)
- Lohkamp 2017: the energy-momentum vector is timelike future pointing
- Huang, Lee 2018: and vanishes only for Minkowskian initial data

・ロト ・雪 ・ ・ ヨ ・

크

Asymptotically hyperbolic metrics

Geometric formulae for total energy (Ashtekar Romano 1992; Herzlich 2015; Chruściel, Barzegar, Höerzinger 2017), space-dimension *n*

$$\mathbf{g} \rightarrow_{r \rightarrow \infty} \overline{\mathbf{g}} = -V^2 dt^2 + V^{-2} dr^2 + r^2 d\Omega^2 \,, \qquad V = r^2 + 1 \,.$$

• For any Killing vector X of **g** we have

$$H_b(X,\mathscr{S}) = \frac{1}{16(n-2)\pi} \lim_{R\to\infty} \int_{t=0,r=R} X^{\nu} Z^{\xi} W^{\alpha\beta}{}_{\nu\xi} dS_{\alpha\beta},$$

where $W^{\alpha\beta}_{\ \nu\xi}$ is the Weyl tensor of **g** and $Z = r\partial_r$ is the dilation vector field

< 日 > < 回 > < 回 > < 回 > < 回 > <

Asymptotically hyperbolic metrics

Geometric formulae for total energy (Ashtekar Romano 1992; Herzlich 2015; Chruściel, Barzegar, Höerzinger 2017), space-dimension *n*

$$\mathbf{g} \rightarrow_{r \rightarrow \infty} \overline{\mathbf{g}} = -V^2 dt^2 + V^{-2} dr^2 + r^2 d\Omega^2 \,, \qquad V = r^2 + 1 \,.$$

• For any Killing vector X of $\overline{\mathbf{g}}$ we have

$$H_b(X,\mathscr{S}) = \frac{1}{16(n-2)\pi} \lim_{R\to\infty} \int_{t=0,r=R} X^{\nu} Z^{\xi} W^{\alpha\beta}{}_{\nu\xi} dS_{\alpha\beta},$$

where $W^{\alpha\beta}_{\ \nu\xi}$ is the Weyl tensor of **g** and $Z = r\partial_r$ is the dilation vector field

• Riemannian version, asymptotically hyperbolic Riemannian metrics g, \mathbf{R}^{i}_{j} is the Ricci tensor of g:

$$H_b(X,\mathscr{S}) = -\frac{1}{16(n-2)\pi} \lim_{R\to\infty} \int_{r=R} X^0 V Z^j(\mathbf{R}^i_j - \frac{\mathbf{R}}{n} \delta^i_j) dS_j.$$

< 日 > < 回 > < 回 > < 回 > < 回 > <

E

Theorem (with P. T. Chruściel, arXiv:1901.05263)

The energy-momentum vector of n-dimensional AH manifolds (M,g) with $R(g) \ge -n(n-1)$, $n \ge 3$, is timelike future pointing or null.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ …

Theorem (with P. T. Chruściel, arXiv:1901.05263)

The energy-momentum vector of n-dimensional AH manifolds (M, g) with $R(g) \ge -n(n-1)$, $n \ge 3$, is timelike future pointing or null.

- Known since 2001 for spin manifolds by Witten-type methods (Wang, Chruściel-Herzlich, see also Min-Oo 1989 for rigidity).
- Oifferent story if conformal infinity is not spherical
- Huang, Jang, Martin (2019?): vanishes only for hyperbolic space
- Key previous partial results by Andersson, Cai & Galloway 2008
- and the Maskit gluing by Isenberg, Lee & Stavrov 2010

・ロ・ ・ 四・ ・ 回・ ・ 日・

Theorem (with P. T. Chruściel, arXiv:1901.05263)

The energy-momentum vector of n-dimensional AH manifolds (M, g) with $R(g) \ge -n(n-1)$, $n \ge 3$, is timelike future pointing or null.

- Known since 2001 for spin manifolds by Witten-type methods (Wang, Chruściel-Herzlich, see also Min-Oo 1989 for rigidity).
- Oifferent story if conformal infinity is not spherical
- Huang, Jang, Martin (2019?): vanishes only for hyperbolic space
- Key previous partial results by Andersson, Cai & Galloway 2008
- and the Maskit gluing by Isenberg, Lee & Stavrov 2010

臣

Theorem (with P. T. Chruściel, arXiv:1901.05263)

The energy-momentum vector of n-dimensional AH manifolds (M, g) with $R(g) \ge -n(n-1)$, $n \ge 3$, is timelike future pointing or null.

- Known since 2001 for spin manifolds by Witten-type methods (Wang, Chruściel-Herzlich, see also Min-Oo 1989 for rigidity).
- Oifferent story if conformal infinity is not spherical
- Huang, Jang, Martin (2019?): vanishes only for hyperbolic space
- Key previous partial results by Andersson, Cai & Galloway 2008
- and the Maskit gluing by Isenberg, Lee & Stavrov 2010

・ロ・ ・ 四・ ・ 回・ ・ 回・

臣

Theorem (with P. T. Chruściel, arXiv:1901.05263)

The energy-momentum vector of n-dimensional AH manifolds (M, g) with $R(g) \ge -n(n-1)$, $n \ge 3$, is timelike future pointing or null.

- Known since 2001 for spin manifolds by Witten-type methods (Wang, Chruściel-Herzlich, see also Min-Oo 1989 for rigidity).
- Oifferent story if conformal infinity is not spherical
- Huang, Jang, Martin (2019?): vanishes only for hyperbolic space
- Key previous partial results by Andersson, Cai & Galloway 2008
- and the Maskit gluing by Isenberg, Lee & Stavrov 2010

・ロ・ ・ 四・ ・ 回・ ・ 回・

æ.

Theorem (with P. T. Chruściel, arXiv:1901.05263)

The energy-momentum vector of n-dimensional AH manifolds (M, g) with $R(g) \ge -n(n-1)$, $n \ge 3$, is timelike future pointing or null.

- Known since 2001 for spin manifolds by Witten-type methods (Wang, Chruściel-Herzlich, see also Min-Oo 1989 for rigidity).
- Oifferent story if conformal infinity is not spherical
- Huang, Jang, Martin (2019?): vanishes only for hyperbolic space
- Key previous partial results by Andersson, Cai & Galloway 2008
- and the Maskit gluing by Isenberg, Lee & Stavrov 2010

★ E ► < E ► </p>

Theorem (Isenberg, Lee & Stavrov 2010, with P.T. Chruściel JDG 2018)

Given two asymptotically hyperbolic vacuum initial data sets one can construct a new one by making a connected sum at the conformal boundary at infinity. The construction can be localised by a Canoto Schoen type hyperbolic gluing.

Theorem (Isenberg, Lee & Stavrov 2010, with P.T. Chruściel JDG 2018)

Given two asymptotically hyperbolic vacuum initial data sets one can construct a new one by making a connected sum at the conformal boundary at infinity. The construction can be localised by a Canoto Schoen type hyperbolic gluing.

Theorem (Isenberg, Lee & Stavrov 2010, with P.T. Chruściel JDG 2018)

Given two asymptotically hyperbolic vacuum initial data sets one can construct a new one by making a connected sum at the conformal boundary at infinity. The construction can be localised by a Carlotto-Schoen type hyperbolic gluing.

Theorem (Isenberg, Lee & Stavrov 2010, with P.T. Chruściel JDG 2018)

Given two asymptotically hyperbolic vacuum initial data sets one can construct a new one by making a connected sum at the conformal boundary at infinity. The construction can be localised by a Carlotto-Schoen type hyperbolic gluing.

- If the energy-momentum vector were spacelike, one could use a Maskit gluing to make it timelike past pointing
- But such metrics have already been excluded by Andersson, Cai & Galloway 2008 and by Chruściel, Galloway, Nguyen & Paetz 2018

Theorem (Isenberg, Lee & Stavrov 2010, with P.T. Chruściel JDG 2018)

Given two asymptotically hyperbolic vacuum initial data sets one can construct a new one by making a connected sum at the conformal boundary at infinity. The construction can be localised by a Carlotto-Schoen type hyperbolic gluing.

- If the energy-momentum vector were spacelike, one could use a Maskit gluing to make it timelike past pointing
- But such metrics have already been excluded by Andersson, Cai & Galloway 2008 and by Chruściel, Galloway, Nguyen & Paetz 2018

Glue the hyperbolic metric on a "small" part near infinity

 $m_1 \rightarrow m_1^{\epsilon}, m_2 \rightarrow m_2^{\epsilon}$. Use hyperbolic isometries such that :

Glue the hyperbolic metric on a "small" part near infinity $m_1 \rightarrow m_1^{\epsilon}, m_2 \rightarrow m_2^{\epsilon}$. Use hyperbolic isometries such that :

Glue the hyperbolic metric on a "small" part near infinity $m_1 \rightarrow m_1^{\epsilon}, m_2 \rightarrow m_2^{\epsilon}$. Use hyperbolic isometries such that :

$m_1^{\epsilon} \rightarrow \Lambda_e^1 m_1^{\epsilon}$ and $m_2^{\epsilon} \rightarrow \Lambda_e^2 m_2^{\epsilon}$. Cut and paste:

Erwann Delay The hyperbolic positive energy theorem

$m_1^{\epsilon} \to \Lambda_{\epsilon}^1 m_1^{\epsilon}$ and $m_2^{\epsilon} \to \Lambda_{\epsilon}^2 m_2^{\epsilon}$. Cut and paste:

Erwann Delay The hyperbolic positive energy theorem

$m_1^{\epsilon} \to \Lambda_{\epsilon}^1 m_1^{\epsilon}$ and $m_2^{\epsilon} \to \Lambda_{\epsilon}^2 m_2^{\epsilon}$. Cut and paste :

The hyperbolic positive energy theorem Erwann Delay

Erwann Delay The hyperbolic positive energy theorem

$$m^{\epsilon} = \Lambda^{1}_{\epsilon}m^{\epsilon}_{1} + \Lambda^{2}_{\epsilon}m^{\epsilon}_{2}.$$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

$$g = x^{-2} \left(dx^2 + \left(h_{AB}(y^C) + x^n \mu_{AB}(y^C) \right) dy^A dy^B + \text{ lower order} \right)$$

where y^A are coordinates at the conformal boundary at infinity,

< 回 > < 回 > < 回 > <

Theorem (Andersson, Cai, Galloway 2008The mass aspect functionofn-dimensional asymptotically hyperbolic Riemannian manifolds,
$$3 \le n \le 7$$
, cannot be negative (everywhere).

$$g = x^{-2} \left(dx^2 + \left(h_{AB}(y^C) + x^n \mu_{AB}(y^C) \right) dy^A dy^B + \text{ lower order} \right)$$

where y^A are coordinates at the conformal boundary at infinity,

$$m_0=\int_{S^{n-1}}\Theta\,d^{n-1}y\,,$$

where the mass aspect function is defined as

$$\Theta = h^{AB} \mu_{AB}$$
.

- Uses a deformation argument independent of dimension, and a positivity theorem valid for $3 \le n \le 7$
- Oifferent story if conformal infinity is not spherical
- One can use the Lohkamp Schoen-Yau theorem to remove the dimension assumption [Chruściel-D 2019]
- This version uses another deformation argument for $n \ge 4$
- (for n = 3 this is immediate by Witten-type arguments, since all three dimensional manifolds are spin)

- Uses a deformation argument independent of dimension, and a positivity theorem valid for $3 \le n \le 7$
- Oifferent story if conformal infinity is not spherical
- One can use the Lohkamp Schoen-Yau theorem to remove the dimension assumption [Chruściel-D 2019]
- I This version uses another deformation argument for $n \ge 4$
- (for n = 3 this is immediate by Witten-type arguments, since all three dimensional manifolds are spin)

The mass aspect function of n-dimensional asymptotically hyperbolic Riemannian manifolds, $3 \le n \cancel{4} / 7$, cannot be negative (everywhere).

- Uses a deformation argument independent of dimension, and a positivity theorem valid for $3 \le n \le 7$
- 2 Different story if conformal infinity is not spherical
- One can use the Lohkamp Schoen-Yau theorem to remove the dimension assumption [Chruściel-D 2019]
- If this version uses another deformation argument for $n \ge 4$
- (for n = 3 this is immediate by Witten-type arguments, since all three dimensional manifolds are spin)

Theorem (Andersson, Cai, Galloway 2008, Chruściel, Galloway, Nguyen, Paetz 2018)

The $m_{abs}/aspect/M/ndtion/energy-momentum vector of n-dimensional asymptotically hyperbolic Riemannian manifolds, <math>3 \le n/\frac{1}{2}/7$, cannot be $m_{abs}/m_{abs}/m_{abs}$ timelike past pointing.

- Uses a deformation argument independent of dimension, and a positivity theorem valid for $3 \le n \le 7$
- 2 Different story if conformal infinity is not spherical
- One can use the Lohkamp Schoen-Yau theorem to remove the dimension assumption [Chruściel-D 2019]
- This version uses another deformation argument for $n \ge 4$

(for n = 3 this is immediate by Witten-type arguments, since all three dimensional manifolds are spin)

Theorem (Andersson, Cai, Galloway 2008, Chruściel, Galloway, Nguyen, Paetz 2018)

The $m_{abs}/aspect/M/ndtion/energy-momentum vector of n-dimensional asymptotically hyperbolic Riemannian manifolds, <math>3 \leq n/\underline{k}/\overline{n}$, cannot be $m_{abs}/ast melike past pointing.$

- Uses a deformation argument independent of dimension, and a positivity theorem valid for $3 \le n \le 7$
- 2 Different story if conformal infinity is not spherical
- One can use the Lohkamp Schoen-Yau theorem to remove the dimension assumption [Chruściel-D 2019]
- **(9)** This version uses another deformation argument for $n \ge 4$
- (for n = 3 this is immediate by Witten-type arguments, since all three dimensional manifolds are spin)

Positive energy for asymptotically hyperbolic manifolds

Results for the non spin case

Erwann Delay The hyperbolic positive energy theorem

If *m* timelike past pointing, $\exists g = hyp$ outside compact set and $R(g) \ge -n(n-1) = 2\Lambda$ [ACG2008].

If *m* timelike past pointing, $\exists g = hyp$ outside compact set and $R(g) \ge -n(n-1) = 2\Lambda$ [ACG2008].

Let g = g and K = -g: and

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

If *m* timelike past pointing, $\exists g = hyp$ outside compact set and $R(g) \ge -n(n-1) = 2\Lambda$ [ACG2008].

Let g = g and K = -g: hyperboloïd outside of a compact set and

If *m* timelike past pointing, $\exists g = hyp$ outside compact set and $R(g) \ge -n(n-1) = 2\Lambda$ [ACG2008].

Let g = g and K = -g: hyperboloïd outside of a compact set and $R(g) - |K|_g^2 + (Tr_g K)^2 \ge 0$.

Change in $\mathbb{R}^{1,n}$ the hyperoloïd near infinity by an horizontal hyperplane (just a graph, $R(g) - |\mathcal{K}|_{g}^{2} + (\mathcal{T}_{g}\mathcal{K})^{2} = 0$ there)

rigid part of AF PET ⇒ (M, g, K) slice in $\mathbb{R}^{1,n} \Rightarrow M$ spin ⇒ (M, g) hyperbolic space (*rigid part of spin AH* PM) $\rightleftharpoons m \equiv 0.2$

Change in $\mathbb{R}^{1,n}$ the hyperoloïd near infinity by an horizontal hyperplane (just a graph, $R(g) - |K|_g^2 + (Tr_g K)^2 = 0$ there)

rigid part of AF PET \Rightarrow (M, g, K) slice in $\mathbb{R}^{1,n} \Rightarrow$ M spin \Rightarrow (M, g) hyperbolic space (*rigid part of spin AH PMa*) $\Rightarrow m \equiv 0.2$

Erwann Delay The hyperbolic positive energy theorem

Change in $\mathbb{R}^{1,n}$ the hyperoloïd near infinity by an horizontal hyperplane (just a graph, $R(g) - |K|_g^2 + (Tr_g K)^2 = 0$ there)

rigid part of AF PET \Rightarrow (M, g, K) slice in $\mathbb{R}^{1,n} \Rightarrow M$ spin \Rightarrow

Erwann Delay The hyperbolic positive energy theorem

space (rigid part of spin AH PMT) 🚖 m = 0. = 0.0

Change in $\mathbb{R}^{1,n}$ the hyperoloïd near infinity by an horizontal hyperplane (just a graph, $R(g) - |K|_q^2 + (Tr_g K)^2 = 0$ there)

rigid part of $AF PET \Rightarrow (M, g, K)$ slice in $\mathbb{R}^{1,n} \Rightarrow M$ spin \Rightarrow

Erwann Delay The hyperbolic positive energy theorem

(M, g) hyperbolic space (rigid part of spin ALL PMT) $\Rightarrow m = 0.2$

Change in $\mathbb{R}^{1,n}$ the hyperoloïd near infinity by an horizontal hyperplane (just a graph, $R(g) - |K|_g^2 + (Tr_g K)^2 = 0$ there)

rigid part of $AF PET \Rightarrow (M, g, K)$ slice in $\mathbb{R}^{1,n} \Rightarrow M$ spin =

Erwann Delay The hyperbolic positive energy theorem

(M, g) hyperbolic space (rigid part of spin ALL PMT) $\Rightarrow m = 0.2$

Change in $\mathbb{R}^{1,n}$ the hyperoloïd near infinity by an horizontal hyperplane (just a graph, $R(g) - |K|_g^2 + (Tr_g K)^2 = 0$ there)

rigid part of $AF PET \Rightarrow (M, g, K)$ slice in $\mathbb{R}^{1,n} \Rightarrow M$ spin \Rightarrow (*M*, *g*) hyperbolic space (*rigid part of spin AH PMT*) $\Rightarrow m = 0.2$

Change in $\mathbb{R}^{1,n}$ the hyperoloïd near infinity by an horizontal hyperplane (just a graph, $R(g) - |K|_g^2 + (Tr_g K)^2 = 0$ there)

rigid part of $AF PET \Rightarrow (M, g, K)$ slice in $\mathbb{R}^{1,n} \Rightarrow M$ spin \Rightarrow (*M*, *g*) hyperbolic space (*rigid part of spin AH PMT*) $\Rightarrow m = 0.2$

If *m* is *spacelike* with positive time component

Use an hyperbolic isometry such that :

Erwann Delay The hyperbolic positive energy theorem

If *m* is *spacelike* with positive time component

Use an *hyperbolic isometry* such that :

m becames *spacelike* with negative time component:

We may assume this is the case.

m becames *spacelike* with negative time component:

We may assume this is the case.

If
$$m^1 = (m_0^1, \vec{m}^1)$$
 and $m^2 = (m_0^1, -\vec{m}^1) = R_\pi m^1$, $m_0^1 < 0$.

If $m = m^1 + m^2 = (m_0^1, \vec{m}^1) + (m_0^1, -\vec{m}^1) = (2m_0^1, \vec{0})$. Not the case but we have :

Erwann Delay The hyperbolic positive energy theorem

If
$$m^1 = (m_0^1, \vec{m}^1)$$
 and $m^2 = (m_0^1, -\vec{m}^1) = R_\pi m^1, m_0^1 < 0.$

If $m = m^1 + m^2 = (m_0^1, \vec{m}^1) + (m_0^1, -\vec{m}^1) = (2m_0^1, \vec{0})$. Not the case but we have :

If
$$m^1 = (m_0^1, \vec{m}^1)$$
 and $m^2 = (m_0^1, -\vec{m}^1) = R_\pi m^1, m_0^1 < 0.$

If $m = m^1 + m^2 = (m_0^1, \vec{m}^1) + (m_0^1, -\vec{m}^1) = (2m_0^1, \vec{0})$. Not the case but we have :

$$m^{\varepsilon} = \Lambda_{\varepsilon}^{1} m^{1,\varepsilon} + \Lambda_{\varepsilon}^{2} m^{2,\varepsilon} = \Lambda_{\varepsilon}^{1} m^{1,\varepsilon} + R_{\pi} \Lambda_{\varepsilon}^{1} m^{1,\varepsilon}$$

$$= (\Lambda_{\varepsilon}^{1} + R_{\pi} \Lambda_{\varepsilon}^{1})(m^{1} + m^{1,\varepsilon} - m^{1})$$

$$= \gamma_{\varepsilon} \left(2(\underbrace{m_{0}^{1} - v_{\varepsilon} m_{1}^{1}}_{<0}, \vec{0}) + \underbrace{\gamma_{\varepsilon}^{-1} \Lambda_{\varepsilon}^{1} \left((1 + (\Lambda_{\varepsilon}^{1})^{-1} R_{\pi} \Lambda_{\varepsilon}^{1})(m^{1,\varepsilon} - m^{1}) \right)}_{=:(*)} \right).$$

$$\begin{array}{ll} |(*)| &\equiv & |(1+(\Lambda_{\varepsilon}^{1})^{-1}R_{\pi}\Lambda_{\varepsilon}^{1})(m^{1,\varepsilon}-m^{1})| \\ &\leq & C(1+\varepsilon^{-2})|m^{1,\varepsilon}-m^{1}|\leq C^{2}o(\varepsilon^{\frac{n}{2}-2})\,, \end{array}$$

For ε small m^{ε} timelike past pointing, not possible, $\varepsilon = 0$

$$m^{\varepsilon} = \Lambda_{\varepsilon}^{1} m^{1,\varepsilon} + \Lambda_{\varepsilon}^{2} m^{2,\varepsilon} = \Lambda_{\varepsilon}^{1} m^{1,\varepsilon} + R_{\pi} \Lambda_{\varepsilon}^{1} m^{1,\varepsilon}$$

$$= (\Lambda_{\varepsilon}^{1} + R_{\pi} \Lambda_{\varepsilon}^{1})(m^{1} + m^{1,\varepsilon} - m^{1})$$

$$= \gamma_{\varepsilon} \left(2(\underbrace{m_{0}^{1} - v_{\varepsilon} m_{1}^{1}}_{<0}, \vec{0}) + \underbrace{\gamma_{\varepsilon}^{-1} \Lambda_{\varepsilon}^{1} \left((1 + (\Lambda_{\varepsilon}^{1})^{-1} R_{\pi} \Lambda_{\varepsilon}^{1})(m^{1,\varepsilon} - m^{1}) \right)}_{=:(*)} \right).$$

$$\begin{split} |(*)| &\equiv |(1+(\Lambda_{\varepsilon}^{1})^{-1}R_{\pi}\Lambda_{\varepsilon}^{1})(m^{1,\varepsilon}-m^{1})| \\ &\leq C(1+\varepsilon^{-2})|m^{1,\varepsilon}-m^{1}|\leq C^{2}o(\varepsilon^{\frac{n}{2}-2})\,, \end{split}$$

For ε small m^{ε} timelike past pointing, not possible, $x = x^{\varepsilon}$

$$m^{\varepsilon} = \Lambda_{\varepsilon}^{1} m^{1,\varepsilon} + \Lambda_{\varepsilon}^{2} m^{2,\varepsilon} = \Lambda_{\varepsilon}^{1} m^{1,\varepsilon} + R_{\pi} \Lambda_{\varepsilon}^{1} m^{1,\varepsilon}$$

$$= (\Lambda_{\varepsilon}^{1} + R_{\pi} \Lambda_{\varepsilon}^{1})(m^{1} + m^{1,\varepsilon} - m^{1})$$

$$= \gamma_{\varepsilon} \left(2(\underbrace{m_{0}^{1} - v_{\varepsilon} m_{1}^{1}}_{<0}, \vec{0}) + \underbrace{\gamma_{\varepsilon}^{-1} \Lambda_{\varepsilon}^{1} \left((1 + (\Lambda_{\varepsilon}^{1})^{-1} R_{\pi} \Lambda_{\varepsilon}^{1})(m^{1,\varepsilon} - m^{1}) \right)}_{=:(*)} \right).$$

$$\begin{split} |(*)| &\equiv |(1+(\Lambda_{\varepsilon}^{1})^{-1}R_{\pi}\Lambda_{\varepsilon}^{1})(m^{1,\varepsilon}-m^{1})| \\ &\leq C(1+\varepsilon^{-2})|m^{1,\varepsilon}-m^{1}|\leq C^{2}o(\varepsilon^{\frac{n}{2}-2})\,, \end{split}$$

For ε small m^{ε} timelike past pointing, not possible,

$$m^{\varepsilon} = \Lambda_{\varepsilon}^{1} m^{1,\varepsilon} + \Lambda_{\varepsilon}^{2} m^{2,\varepsilon} = \Lambda_{\varepsilon}^{1} m^{1,\varepsilon} + R_{\pi} \Lambda_{\varepsilon}^{1} m^{1,\varepsilon}$$

$$= (\Lambda_{\varepsilon}^{1} + R_{\pi} \Lambda_{\varepsilon}^{1})(m^{1} + m^{1,\varepsilon} - m^{1})$$

$$= \gamma_{\varepsilon} \left(2(\underbrace{m_{0}^{1} - v_{\varepsilon} m_{1}^{1}}_{<0}, \vec{0}) + \underbrace{\gamma_{\varepsilon}^{-1} \Lambda_{\varepsilon}^{1} \left((1 + (\Lambda_{\varepsilon}^{1})^{-1} R_{\pi} \Lambda_{\varepsilon}^{1})(m^{1,\varepsilon} - m^{1}) \right)}_{=:(*)} \right).$$

$$\begin{aligned} |(*)| &\equiv |(1+(\Lambda_{\varepsilon}^{1})^{-1}R_{\pi}\Lambda_{\varepsilon}^{1})(m^{1,\varepsilon}-m^{1})| \\ &\leq C(1+\varepsilon^{-2})|m^{1,\varepsilon}-m^{1}|\leq C^{2}o(\varepsilon^{\frac{n}{2}-2}), \end{aligned}$$

For ε small m^{ε} timelike past pointing, not possible!

Positive energy for asymptotically hyperbolic manifolds Thank you

THANK YOU !

Erwann Delay The hyperbolic positive energy theorem

(日)